Posted in | News | Lithium | Mining Business

Saint Jean Carbon Agrees to Acquire Glen Almond Quartz Mine in Quebec for Air Battery Development

Saint Jean Carbon Inc., a carbon sciences company engaged in the development of natural graphite properties and related carbon products, is pleased to announce they have entered into an nonbinding and non-arm's length agreement to acquire the past producing Glen Almond quartz mine in Quebec.

Saint Jean feels it is strategic and falls in line with their graphite lithium-ion battery engineering work as a possible secondary material as silica may have increased demands with the new (silica based) air batteries.

Air batteries were originally proposed in the 1970s as a possible power source for battery electric vehicles. Li-air (lithium-air) batteries recaptured scientific interest in the late 2000s due to advances in materials technology and an increasing demand for renewable energy sources. The major appeal of the Li-air battery is the extremely high specific energy; a measure of the amount of energy a battery can store for a given weight. A lithium-air battery has an energy density (per kilogram) comparable to gasoline. Li-air batteries gain this advantage in specific energy since they use oxygen from the air instead of storing an oxidizer internally.

Paul Ogilvie, CEO, commented: "We feel the acquisition gives us an opportunity to start working on air battery materials, studying the qualities that could be needed, test production theories and generally get a better understanding of the performance requirements of the material. This will help us significantly as the technology grows out in the coming years".

A major driver in lithium-air battery development is the automotive sector. The energy density of gasoline is approximately 13 kW·h/kg, which corresponds to 1.7 kW·h/kg of energy provided to the wheels after losses. The theoretical energy density of the lithium-air battery is 12 kW·h/kg (43.2 MJ/kg) excluding the oxygen mass. It has been theorized that the same 1.7 kW·h/kg could reach the wheels using Li-air after losses from over-potentials, other cell components and battery pack auxiliaries, given the much higher efficiency of electric motors (Imanishi and Yamamoto, 2014). This means; it may be possible for a Li-air battery to be as cost effective as gasoline, as the cost for electricity to charge the battery would be less.

The proposed transaction is subject to TSX approval, the term sheet states the company will issue 1,500,000 shares at closing and will pay $10,000 in March 2016. Further payments of 100,000 shares will be paid out, if the property meets certain milestones related to quality and tonnage. Dr. Don MacIntyre, the Company's geologist, P. Geo., and Qualified Person, reviewed and approved the technical and scientific information in this release.

Source: http://www.saintjeancarbon.com/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.