Posted in | News | Rare Earth Elements

Research Project Identifies Agents for Separation of Better-Performing Rare-Earth Metals

A research project led by the Critical Materials Institute, a U.S. Department of Energy Innovation Hub, has identified agents for the separation of rare-earth metals that are potentially much less costly and better-performing than those currently used.

Rare-earth metals are in increasingly high demand for their use in consumer electronics and clean energy technologies. While these materials are not actually rare, they are difficult and costly to refine, usually through solvent-extraction processes that rely on ligands—molecules that act to bind with and separate the metals.

Through the use of computer–aided molecular design, a collaboration of researchers from the Supramolecular Design Institute, Oak Ridge National Laboratory, Ames Laboratory, and Idaho National Laboratory identified several new low-cost, highly effective ligands.

“Development of each ligand by industry can take up to five years and cost millions of dollars,” said Vyacheslav Bryantsev, a CMI researcher in Oak Ridge National Laboratory's Chemical Sciences Division. “Guiding the design computationally prior to experimental testing allows us to really narrow down and focus only on the very promising ligands, ones that are very strong and very selective.”

The researchers used a program called Host Designer, a molecule-building software program that is capable of very quickly exploring millions of possibilities by broadly categorizing them according to their molecular architecture.

“Think of a box of TinkertoysTM,” said Benjamin Hay, the creator of Host Designer and CEO of Supramolecular Design Institute. “If we were asked to build every possible structure out of those pieces, it would take a long time, maybe years. But our computer code has a database of molecular links that are like the chunks of those Tinkertoys, and can build those 3D structures in every conceivable way possible. It can produce a million structures a minute, and find the ones with the shapes and properties we’re looking for.”

Once millions of potential molecules were reduced to a more manageable number of about 3,000, said Bryantsev, successively more complex computational analyses were used to narrow the number of potential ligands to a handful.

Some of those have been created at Oak Ridge National Laboratory, and they will be tested experimentally in realistic processing conditions by a team at Idaho National Laboratory.

The research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory.

The science is further discussed in a paper, “Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants,” co-authored by B.W. McCann, N. De Silva, T.L. Windus, M.S. Gordon, B.A. Moyer, V.S. Bryantsev, and B.P. Hay. The discovery and the computer programs developed to make it have been chosen as the cover story of the June 20 issue of the scientific journal Inorganic Chemistry, published by the American Chemical Society. The article was originally published online in February.

The Critical Materials Institute is a Department of Energy Innovation Hub led by the U.S. Department of Energy's Ames Laboratory and supported by DOE’s Office of Energy Efficiency and Renewable Energy’s Advanced Manufacturing Office. CMI seeks ways to eliminate and reduce reliance on rare-earth metals and other materials critical to the success of clean energy technologies.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

Ames Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit


Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Azthena logo powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.